
Randomness 101
or “how not to mess up your secret keys next time”

Yolan Romailler (@anomalroil)

Left blank on purpose for captioning system.

https://twitter.com/AnomalRoil

→ SWE @ Protocol Labs

→ CTF player (mostly crypto, forensic & misc)

→ Maths background, but don’t worry!

→ Board games amateur

→ Love to go to confs: DEF CON, NSec, MCH,
GopherConEU, etc.

Who am I?

yolan@protocol.ai
Email

@anomalroil
Twitter

• What is randomness and its flavours?

• Why do we need it?

• Why are there problems with it?

• In practice, how to avoid problems

Agenda

Left blank on purpose for captionning system.

Intro:
What is randomness?

Ch
ap

te
r I

Ch
ap

te
r I

I

Ch
ap

te
r I

II

Ch
ap

te
r I

V

What is randomness?
According to the Cambridge dictionary, randomness is:

What is randomness?
According to the Cambridge dictionary, randomness is:

● “the quality of being random”

What is randomness?
According to the Cambridge dictionary, randomness is:

● “the quality of being random”

Granted, they refine it a bit:

● “the quality of being random (= happening, done, or chosen by
chance rather than according to a plan)”

What is randomness?

On my side, I prefer the Oxford Languages definition:

● “the quality or state of lacking a pattern or principle of
organization; unpredictability”

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011 → 0x12345678ab
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011 → 0x12345678ab
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011 → 0x12345678ab
0b1010101010101010101010101010101010101

And yet all of them have the same probability of occurring in a random draw!

Is that random?

• So, we have some kind of intuition of “what is random”, but it still can be fooled.

• A more formal treatment of randomness can be done using “the Kolmogorov
complexity” which can also help us understand our intuition.

• The Kolmogorov complexity of something is the length of a shortest program (in
a given language) that produces that thing as output:

print(‘0b’+37*’1’) → 19 chars
print(‘0b1111111111111111111111111111111111111’) → 48 chars

The notion of randomness

Back to the start!

I like to say there are different flavours of randomness:
● Secret Randomness
● Public Randomness
● A few extra specific ones

What is randomness?

We often rely on secret randomness:
● to generate keys, both for public key and symmetric cryptography
● for ephemeral keys / IV / nonces

You might not realise, but you’re using such randomness daily.

What is secret randomness?

● Public randomness is simply a random value that is meant to
be public

● We want public randomness typically for:
○ reproducibility
○ auditability

What is public randomness?

WARNING:
DO NOT USE PUBLIC RANDOMNESS TO GENERATE CRYPTOGRAPHIC MATERIAL

Public != Secret

● Public randomness is cool, but we usually use it when we
need “public auditability”, we need to be “off the hook”.

● Verifiable randomness is randomness that can be verified to
have been properly issued and not manipulated

● Its goal is usually to increase the trust we have in a random
“draw” (think of lotteries, tombola, jury selection, etc.)

What is verifiable randomness?

The notion of distributed randomness hides many problems:

- decentralisation of trust: no given trusted third party
- achieving consensus on a random value is hard
- high-availability: no single point of failure

Failing at producing proper randomness can be very dangerous
for any distributed system, especially nowadays for blockchains.

What is
distributed
randomness?

Left blank on purpose for captionning system.

Why:

Why do we need
randomness? Ch

ap
te

r I

Ch
ap

te
r I

I

Ch
ap

te
r I

II

Ch
ap

te
r I

V

Protocols & Cryptography:

● Protocols: leader election in Proof of Stake blockchains, Tor (path selection), sharding

● Gossiping: randomly choosing peers in the network to disseminate information

● Parameters: Nonces & IV for symmetric encryptions, prime numbers generation, ECC
parameters

● Schemes: Diffie Hellman exchange, Schnorr signatures, more generally for zero
knowledge proofs, One-Time Pad

Why do we need randomness?

But also much more:

○ Lotteries, jury selection, sortitions, random audits…
○ Statistics: sampling, reducing bias in controlled trials in medicine, …
○ Software: fuzzing, chaos monkey, …
○ Even useful for cleromancy and divination!

Why do we need randomness?

Left blank on purpose for captionning system.

But, why?

July 6, 2022

Left blank on purpose for captionning system.

But, why?

August 10, 2013

Left blank on purpose for captionning system.

But, why?

December 30, 2010

Left blank on purpose for captionning system.

Why:
The problems with
randomness &
how to avoid them

Ch
ap

te
r I

Ch
ap

te
r I

I

Ch
ap

te
r I

II

Ch
ap

te
r I

V

This is something you’ll often hear when talking to applied cryptographers
who have done some code assessments in their life.

In general it’s very important to have “proper” randomness, that is:
● Unpredictable: impossible to predict the next numbers
● Bias-resistant: the final output cannot be biased in any way

“Randomness is hard”

● If you can predict the random value, you can “cheat” (gambling, games, …)
● If you can predict who’s going to be selected, fairness isn’t guaranteed

anymore (think of leader election, sharding, jury selection, …)
● If you can predict “a secret key”, then the security of the system is

compromised

Why unpredictable?

For Schnorr-like signature schemes, such as ECDSA, DSA or EdDSA, a
nonce (“number used only once”, also sometimes called “secret k”) with a
bias on less than one bit will lead to full key recovery attacks from just
seeing signatures! Attacks exploiting biased keys have been known and
used in practice since 1999!

Why unbiased?

Left blank on purpose for captionning system.

Remember
that?

August 10, 2013

Left blank on purpose for captionning system.

Even worse:

2019: all vulnerable addresses were empty already…

Left blank on purpose for captionning system.

Hands-on
:In practice

Ch
ap

te
r I

Ch
ap

te
r I

I

Ch
ap

te
r I

II

Ch
ap

te
r I

V

How to get
a secret
random
byte?

https://go.dev/play/p/mED52o78h6P

import (
"crypto/rand"
"fmt"

)

func main() {
x := make([]byte, 1)
if _, err := rand.Read(x); err != nil {

 fmt.Println("error:", err)
 return
}
fmt.Println(x)

}

https://go.dev/play/p/mED52o78h6P

Maybe we can use
“math/rand”?

How to get
a secret
random
integer <
107?

https://go.dev/play/p/BZ0nFBfA78t

package main

import (
 "fmt"
 "math/rand"
)

func main() {
 x := rand.Intn(107)
 fmt.Println(x)
}

https://go.dev/play/p/BZ0nFBfA78t

No, “math/rand” is
not meant to be
properly random!

It’s easy to
have bad
randomness

https://go.dev/play/p/BZ0nFBfA78t

package main

import (
 "fmt"
 "math/rand"
)

func main() {
 x := rand.Intn(107)
 fmt.Println(x)
}

“This package's outputs
might be easily predictable
regardless of how it's
seeded”

https://go.dev/play/p/BZ0nFBfA78t

Okay, let’s take a byte
and reduce it modulo
107 then!

How to get
a secret
random
integer <
107?

https://go.dev/play/p/SRKRue9tU1H

import "crypto/rand" [...]

func main() {
 b := make([]byte, 1)
 if _, err := rand.Read(b); err != nil {
 fmt.Println("error:", err)
 return
 }
 x := b[0] % 107
 fmt.Println(x)
}

https://go.dev/play/p/SRKRue9tU1H

No! Reducing it
modulo 107 means
we’re now biased!

How to get
a secret
random
integer <
107?

https://go.dev/play/p/eWtmS3vjWt9

import "crypto/rand" [...]

func main() {
 b := make([]byte, 1)
 if _, err := rand.Read(b); err != nil {
 fmt.Println("error:", err)
 return
 }
 x := b[0] % 107
 fmt.Println(x)
}

Reducing a random binary
string to a value that is not a
power of 2 introduces a
modulo bias!

https://go.dev/play/p/eWtmS3vjWt9

Out of the 256 possible values for a byte, from 0 to 255, if we reduce modulo 107,
then the first 42 values are more likely to occur because 256 % 107 = 42

This is a Modulo Bias

How to avoid bias?
Use the proper package “crypto/rand” whenever security relies on randomness
(even for shuffling!!) and make sure to use either:

● probabilistically safe modulo (i.e. reduce a much larger value modulo)
● rejection sampling (i.e. keep picking a random value until it’s smaller than

the biggest multiple of the max value of that bit length)
● Lemire’s divisionless method (not noticeably faster for CPRNGs sadly)

Read more about modulo bias in my post about it:
 The definitive guide to “modulo bias and how to avoid it”

https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

package rand // import "crypto/rand"

Package rand implements a cryptographically secure random
number generator.

var Reader io.Reader
func Int(rand io.Reader, max *big.Int) (n *big.Int, err error)
func Prime(rand io.Reader, bits int) (p *big.Int, err error)
func Read(b []byte) (n int, err error)

How to avoid bias?

Also, don’t use floats
Last time I explained this, someone asked me
> Am I suffering from modulo bias if I do:
> rand.Read(b)
> x := int(float32(b[0]) / 255.0 * 107)

Well, not the modulo bias per se, but this is still biased, yes.
Floating point arithmetic and precision is going to bias this in weird ways.
See playground demo: https://go.dev/play/p/iq16iCoeE8Q

See also: https://www.pcg-random.org/posts/bounded-rands.html

https://go.dev/play/p/iq16iCoeE8Q
https://www.pcg-random.org/posts/bounded-rands.html

With rejection
sampling now we’re
good!

How to get
a secret
random
integer <
107?

https://go.dev/play/p/v6d3FwqS2Lv

import "crypto/rand" [...]

func main() {
b := make([]byte, 1) //max value = 255
x:= 255
for x >= 255-255%107 { //the closest multiple

rand.Read(b)
x = int(b[0])

}
x %= 107
fmt.Println(x)

}

https://go.dev/play/p/v6d3FwqS2Lv

Or using the proper
method rand.Int
from “crypto/rand”.
It uses rejection
sampling under the
hood.

How to get
a secret
random
integer <
107?

https://go.dev/play/p/bI_7_oiFCyr

import (
"crypto/rand"
"fmt"
"math/big"

)

func main() {
x, _ := rand.Int(rand.Reader, big.NewInt(107))
y := x.Int64()
fmt.Printf("x=%d of type %T\n", x, x)
fmt.Printf("y=%d of type %T\n", y, y)

}

https://go.dev/play/p/bI_7_oiFCyr

> Okay, but how about if I want to run a lottery and don’t want
people saying I’ve rigged my PRNG or my “crypto/rand” package in
case one of my friends wins?

This was for “secret” or “local”
randomness

> Okay, but how about if I want to run a lottery and don’t want
people saying I’ve rigged my PRNG or my “crypto/rand” package in
case one of my friends wins?

i.e. “How do we do to get some public, verifiable randomness?”

This was for “secret” or “local”
randomness

“RANDOM.ORG offers true random numbers to anyone on the
Internet. The randomness comes from atmospheric noise,
which for many purposes is better than the pseudo-random
number algorithms typically used in computer programs.
People use RANDOM.ORG for holding drawings, lotteries and
sweepstakes, to drive online games, for scientific applications
and for art and music. The service has existed since 1998”

History: Prior art

• The idea of running a public, verifiable “trusted” randomness
beacon was first proposed by NIST in 2011

• Their NIST Beacon v1 was launched on 2013-09-05
• Their NIST Beacon v2 was launched in 2019:

 https://doi.org/10.6028/NIST.IR.8213-draft

History: The NIST Beacons

https://doi.org/10.6028/NIST.IR.8213-draft

Previous attempts to generate public randomness

Can we do simpler & faster than before?

● DNS: Highly available source of naming information
● NTP: Highly available source of timing information
● PKIs: Trusted network delivering certificates
● Certificate transparency: Certificate authenticity information

➡ Drand: Highly available, decentralized, and publicly verifiable
source of randomness introduced in 2019, launched for
safe general availability in 2020.

drand provides a public randomness
service, just like we have:

Left blank on purpose for captionning system.

Drand properties
● Drand is software run by a set of independent nodes that collectively produce randomness

● Drand is open source¹, coded in Go, supported by Protocol Labs

● Decentralized randomness service using

○ Distributed Key Generation based on Verifiable Secret Sharing

○ Threshold cryptography

○ Key is defined on G2 of the BLS12-381 pairing curve, achieves ~128 bits of security

● Binds together independent entropy sources into a publicly verifiable one

● Tested, audited, and deployed (more on that later)

1. https://github.com/drand/drand

https://drand.love/docs/cryptography/#verifiable-secret-sharing
https://github.com/drand/drand

Left blank on purpose for captionning system.

Drand properties
Decentralized: a threshold of nodes operated by different parties is needed to generate
randomness; there is no central point of failure.

Unpredictable: no party learns anything about the output of the round until a sufficient
number of drand nodes reveals their contributions thanks to threshold cryptography.

Bias Resistant: the output represents an unbiased, uniformly random value.

Verifiable: the random output is third-party verifiable by verifying the aggregate BLS
signatures against the collective public key computed during setup.

Left blank on purpose for captionning system.

The League of Entropy

2
years

23
nodes

0
single

point of failure

0
disruptions

since 2020-08-10

16
organizations

2M+
rounds

4
public endpoints

The “entropy”

Lava lamps in the Cloudflare lobby. Courtesy of @mahtin

The only moment where
fresh entropy is required is
during the Distributed Key
Generation.

Some partners are getting
their entropy from so-called
“TRNG”, based on physical
properties known to be
unpredictable.

https://twitter.com/mahtin/status/888251632550424577

Left blank on purpose for captionning system.

You can test it in your browser:
https://api.drand.sh/public/latest

Public API:
web
endpoints

https://go.dev/play/p/mED52o78h6P

curl https://api.drand.sh/public/latest

https://api.drand.sh/public/latest

Just use a verifying client directly:

● Go: import “github.com/drand/drand/client”
● TS: https://github.com/drand/drand-client/
● Rust: https://github.com/CosmWasm/drand-verify

How to get public, verifiable
randomness?

Using the verifying
client directly, easy!

How to get
public,
verifiable
randomness?

[]
"github.com/drand/drand/client"
"github.com/drand/drand/client/http"

func main() {
cHash, _ :=

hex.DecodeString("8990e7a9aaed2ffed73dbd7092123d6f289930540d7651336225dc172e51b2ce")
c, _ := http.New("https://api.drand.sh/", cHash, nil)
v, _ := client.Wrap([]client.Client{c}, client.WithChainHash(cHash))

r, _ := v.Get(context.Background(), 0)
fmt.Println(r)

}

How to get
public
randomness?

import "github.com/drand/drand/client/http" [...]

func main() {
var chainHash, _ =

hex.DecodeString("8990e7a9aaed2ffed73dbd7092123d6f289930540d7651336225dc172e51b2ce")
// create new client for url and chainhash
c, _ := http.New("https://api.drand.sh/", chainHash, nil)
// get the latest round of randomness
r, _ := c.Get(context.Background(), 0)

fmt.Printf("Round n°%d, random=\n%x\n", r.Round(), r.Randomness())
}

Round n°2324934, random=
5eb6f4d9fae65b4c6d94967dbb7c444860d01e60a3f34938ab495bb5c
a098167

We can use the
public endpoints!

First we can derive
the randomness
from the signature

How to get
public,
verifiable
randomness?

import "github.com/drand/drand/client/http" [...]

func main() {
var chainHash, _ =

hex.DecodeString("8990e7a9aaed2ffed73dbd7092123d6f289930540d7651336225dc172e51b2ce")
// create new client for url and chainhash
c, _ := http.New("https://api.drand.sh/", chainHash, nil)
// get the latest round of randomness
r, _ := c.Get(context.Background(), 0)

fmt.Printf("Round n°%d, random=\n%x\n\n", r.Round(), r.Randomness())

h := sha256.New()
h.Write(res.Signature())
derRd := h.Sum(nil)
fmt.Printf("Randomness from hash is indeed:\n%x\n", derRd)

}

How to get
public,
verifiable
randomness? Round n°2324946, random=

1da0b7a31db72fe3526fb437ef241763143d2baeb1df434be70ef63c68e15ab0

Randomness from hash is indeed:
1da0b7a31db72fe3526fb437ef241763143d2baeb1df434be70ef63c68e15ab0And it checks out!

But when we’re
talking about
signatures, we
should first verify
them, right?

How to get
public,
verifiable
randomness?

import (bls12381 "github.com/drand/kyber-bls12381" [...]
pKB, _ :=

hex.DecodeString("868f005eb8e6e4ca0a47c8a77ceaa5309a47978a7c71bc5cce96366b5d7a569937c529eeda66c7293784a9402801af31")

suite := bls12381.NewBLS12381Suite()
pk := suite.G1().Point()
pk.UnmarshalBinary(pKB)

buf := make([]byte, 8)
binary.BigEndian.PutUint64(buf, r.Round())
h := sha256.New()
// we need the previous signature!
p, _ := c.Get(context.Background(), r.Round()-1)
h.Write(p.Signature())
h.Write(buf)
// we finally get the signed message
msg := h.Sum(nil)

But when we’re
talking about
signatures, we
should first verify
them, right?

How to get
public,
verifiable
randomness?

import “github.com/drand/kyber/sign/bls” [...]

// Finally we can verify the signature!
err = bls.NewSchemeOnG2(suite).Verify(pk, msg, r.Signature())
if err != nil {
fmt.Println("Signature didn't verify.")

} else {
fmt.Println("Signature verified.")

}

// and derive the randomness out of the signature
h.Reset()
h.Write(res.Signature())
derRd := h.Sum(nil)
fmt.Printf("Randomness from hash is indeed:\n%x\n", derRd)

}

So, we got a random
bytestring, but how
do we use it?
We need to “derive”
our values from it!

How to use
verifiable
randomness?

[...]

derRd := h.Sum(nil)
x:= int(derRd[0])
for x >= 255-255%107 {

h.Reset()
derRd = h.Sum(derRd)
x = int(derRd[0])

}
x %= 107
fmt.Println(x)

}

Left blank on purpose for captionning system.

Relying on drand, we’ve released two open-source libraries and
clients to do timelock encryption: encrypt now towards the future!

Using the fact that drand (and thus the League of Entropy)
produces new signed rounds every 30 seconds in a reliable way.

Bonus: timelock encryption!

Round 1000000
Feb 30th, 1:19:00

Round 1000001
Feb 30th, 1:19:30

Round 1000002
Feb 30th, 1:20:00

Round 1000003
Feb 30th, 1:20:30Today

Future round

Left blank on purpose for captionning system.

- Released in August: “A dead man’s
full-yet-responsible disclosure
system”

- Described in more gory math details
my public Research seminar.

- More details on this public page.
- Incoming ePrint paper!

https://timevault.drand.love/

timevault.drand.love

tlock

https://www.youtube.com/watch?v=Zgsv4LY0Sn0
https://protocollabs.notion.site/protocollabs/Timelock-Encryption-drand-f5df65a54a6641dfa77f9b8168c9b90b#7f369b7460254086bb188fb34080cfa0
https://timevault.drand.love/
https://timevault.drand.love/

Left blank on purpose for captionning system.

Grow the League!
● Join the League of Entropy, help us

provide free public randomness.

● We are looking for partners running nodes or relays.

● Infrastructure and operational requirements are minimal:
Estimated commitment: 1-2 hours/month, 1vCPU, 512MB RAM

https://drand.love/partner-with-us/

https://drand.love/partner-with-us/

Left blank on purpose for captionning system.

Thank you !

For more information and/or if you want to reach out, go to:
https://drand.love

https://leagueofentropy.com
https://github.com/drand/drand

yolan@protocol.ai
Email

https://twitter.com/anomalroil
Twitter

Left blank on purpose for captionning system.

If you trust there are never more than a threshold number of malicious nodes
on the (drand) network you're relying on, you’re good to go!

UNLESS! Somebody builds a quantum computer breaking modern schemes,
since the BLS signature scheme isn't quantum resistant.
(Which means we’re probably safe for the next 5-10 years, maybe even 20.)

Threats &
security

Security “assumptions”

Battle-tested
cryptography

Permissioned
network

BLS
signatures

League of
Entropy keys

Left blank on purpose for captionning system.

Current randomness is chained:

Chained Randomness

Left blank on purpose for captionning system.

Multi Protocol
We can now have different
protocols for different use
cases in parallel!

Current target: have a
higher frequency
network

This was just launched
on our testnet!

Left blank on purpose for captionning system.

New unchained randomness:

Unchained Randomness

