Randomness 101

or “how not to mess up your secret keys next time”

Yolan Romailler (@anomalroil)

https://twitter.com/AnomalRoil

— SWE @ Protocol Labs
— CTF player (mostly crypto, forensic & misc)
— Maths background, but don't worry!

— Board games amateur
— Love to go to confs: DEF CON, NSec, MCH,

GopherConEU, etc.
N
Protocol Email Twitter
Labs yolan@protocol.ai @anomalroil
— t = 4: — = __-;___::__,@_

Agenda

What is randomness and its flavours?

Why do we need it? e T R

Why are there problems with it?

In practice, how to avoid problems

‘: PI’OtOCQJ. —— . —— '

ffffffff

i

Intro:

What is randomness?

\: Protocol
Labs

>

What is randomness?

According to the Cambridge dictionary, randomness is:

What is randomness?

According to the Cambridge dictionary, randomness is:

“the quality of being random”

What is randomness?

According to the Cambridge dictionary, randomness is:
“the quality of being random”
Granted, they refine it a bit:

“the quality of being random (= happening, done, or chosen by
— chance rather than according to a plan)”

What is randomness?

On my side, | prefer the Oxford Languages definition:

T “the quality or state of lacking a pattern or principle of
organization; unpredictability”

Is that random?

GDTTTTTTTTTTTTTTTTITTTTITITITITITITITITTITITTTT1111
Bb0100111101611116110011070110000000101
Bb10000000000000000001111111111TTTTTT1111
Bb100100061107100070101100111100010701011
Bb101016101071070701010101061610107010101

Is that random?

‘A

Bb0100111101611116110011070110000000101
Bb10000000000000000001111111111TTTTTT1111
Bb100100061107100070101100111100010701011
Bb101016101071070701010101061610107010101

Is that random?

‘A

Bb0100111101071111011001106106110000000101 — BxB09ebd9acBs
Bb10000000000000000001111111111TTTTTT1111
Bb100100061107100070101100111100010701011
Bb101016101071070701010101061610107010101

Is that random?

‘A

Bb0100111101071111011001106106110000000101 — BxB09ebd9acBs

‘A ALALALALA(AIATAIATALALALA(ALIALAIAL,

Bb100100061107100070101100111100010701011
Bb101016101071070701010101061610107010101

Is that random?

‘A

Bb0100111101071111011001106106110000000101 — BxB09ebd9acBs

‘A ALALALALA(AIATAIATALALALA(ALIALAIAL,

3b100100011010001818118¢6 3861+81+8+8++ . 0x12345678ab
Bb101010101010101010101010170170101010101

Is that random?

‘A

Bb0100111101071111011001106106110000000101 — BxB09ebd9acBs

3H84+8+81+ - 0x12345678ab

Is that random?

And yet all of them have the same probability of occurring in a random draw!

‘A

Bb0100111101071111011001106106110000000101 — BxB09ebd9acBs

3H84+8+81+ - 0x12345678ab

The notion of randomness

So, we have some kind of intuition of “what is random”, but it still can be fooled.

A more formal treatment of randomness can be done using “the Kolmogorov
complexity” which can also help us understand our intuition.

The Kolmogorov complexity of something is the length of a shortest program (in
a given language) that produces that thing as output:

print(‘Ob’+37*'1") — 19 chars
print(‘'Ob1111111111111111111111111111111111111’) — 48 chars

\‘ Protocol —r—— .

N Labs Mo

What is randomness?

Back to the start!
— | like to say there are different flavours of randomness:
- e Secret Randomness
N e Public Randomness

e A few extra specific ones

What is secret randomness?

We often rely on secret randomness:
e to generate keys, both for public key and symmetric cryptography
e for ephemeral keys / IV / nonces

You might not realise, but you're using such randomness daily.

What is public randomness?

e Public randomness is simply a random value that is meant to

be public
T
— - e We want public randomness typically for:
___ o reproducibility
o auditability

Public I= Secret

WARNING:
DO NOT USE PUBLIC RANDOMNESS TO GENERATE CRYPTOGRAPHIC MATERIAL

What is verifiable randomness?

e Public randomness is cool, but we usually use it when we
need “public auditability”, we need to be “off the hook”.

— e Verifiable randomness is randomness that can be verified to
m have been properly issued and not manipulated
— e |ts goal is usually to increase the trust we have in a random

— “draw” (think of lotteries, tombola, jury selection, etc.)

What is N\ .‘::,. S RS

distributed N =l PN
randomness? I [T 7

The notion of distributed randomness hides many problems:

- decentralisation of trust: no given trusted third party
I - achieving consensus on a random value is hard
- high-availability: no single point of failure

Failing at producing proper randomness can be very dangerous
for any distributed system, especially nowadays for blockchains.

(RS S

Why:

Wh

y

andomneses
ess? e

N
h.o

P
I_rotoc
abs o

S? — ooy

Why do we need randomnes

Protocols & Cryptography:
o . leader election in Proof of Stake blockchains, Tor (path selection), sharding
o : randomly choosing peers in the network to disseminate information

° : Nonces & |V for symmetric encryptions, prime numbers generation, ECC
parameters

o . Diffle Hellman exchange, Schnorr signatures, more generally for zero
knowledge proofs, One-Time Pad

Why do we need randomness?

But also much more:

o Lotteries, jury selection, sortitions, random audits...

o Statistics: sampling, reducing bias in controlled trials in medicine, ...
o Software: fuzzing, chaos monkey, ...

o Even useful for cleromancy and divination!

€he New ork Cimes

Comey and McCabe, Who Infuriated

Trump, Both Faced Intensive L.R.S.
Audits

The former F.B.I. director and his deputy, both of whom former
President Donald J. Trump wanted prosecuted, were selected for
a rare audit program that the tax agency says is random.

July 6, 2022

#ll Author

BurtW (OP)
Legendary

Activity: 2646
Merit: 1104

All paid signature
campaigns should
be banned.

& @

Topic: Bad sighatures leading to 55.82152538 BTC theft (so far) (Read 64937 times)

Bad sighatures leading to 55.82152538 BTC theft (so far)

Merited by LoyceV (8), ETFbitcoin (6)

| have only seen this discussed in the newbies section so | thought | would open a thread
here for a more technical discussion of this issue.

Several people have reported their BTC stolen and sent to https://blockchain.info/address
[1IHKywxXxiL4)zigXrzLKhmB6a74mabkxbSDj

As you can see the address currently contains 55.82152538 stolen coins.

It has been noticed that the coins are all transferred in a few hours

. As discussed here:

http://en.wikipedia.org/wiki/Elliptic Curve DSA

the reuse of the same k value allows anyone to be able to recover the private key.

August 10, 2013

December 30, 2010

ars'technica

GAMING & CULTURE / GAMING & ENTERTAINMENT

PS3 hacked through poor cryptography implementation

A group of hackers named failOverflow revealed in a presentation how they ...

by Casey Johnston - Dec 30, 2010 6:25pm CET

After beating several other security measures, the group was able to locate the PS3's
ECDSA signature, a private cryptographic key needed to sign off on high-level
operations. Normally, these kinds of keys are difficult to figure out, and require running
many generations of keys to crack.

But when failoverflow worked backwards from generated keys, [EyOUNCIOUBINGN

randomized at all. Instead, the PS3 was using the same number for that variable. iy

single time, making it easy to work out acceptable keys.

If this really works, it's a big slip on Sony's part. While PS3s are no stranger to software
updates, this seems like it might affect operation on too many levels to be an easy fix.

W
hy

I
hi‘
:
V\C’IP
OI'
ne
&
Y
eit
I:

h“

i
ab:
So C
o,
I

i

“Randomness is hard”

This is something you'll often hear when talking to applied cryptographers
who have done some code assessments in their life.

In general it's very important to have “proper” randomness, that is:
o . impossible to predict the next numbers
o . the final output cannot be biased in any way

Why unpredictable?

e If you can predict the random value, you can “cheat” (gambling, games, ...)

e |f you can predict who's going to be selected, fairness isn't guaranteed
anymore (think of leader election, sharding, jury selection, ...)

e |f you can predict “a secret key”, then the security of the system is
compromised

F‘ PI’OtOCQI. —_— . == ,_;__
. Labs e

Why unbiased?

For Schnorr-like signature schemes, such as ECDSA, DSA or EADSA, a
nonce (“number used only once”, also sometimes called “secret k") with a
bias on less than one bit will lead to full key recovery attacks from just
seeing signatures! Attacks exploiting biased keys have been known and

used in practice since 1999!

F‘ PI’OtOCQI. —_— . == ,_;__
. Labs e

*E N E
that?

#ll Author

BurtW (OP)
Legendary

Activity: 2646
Merit: 1104

All paid signature
campaigns should
be banned.

& @

Topic: Bad sighatures leading to 55.82152538 BTC theft (so far) (Read 64937 times)

Bad sighatures leading to 55.82152538 BTC theft (so far)

Merited by LoyceV (8), ETFbitcoin (6)

| have only seen this discussed in the newbies section so | thought | would open a thread
here for a more technical discussion of this issue.

Several people have reported their BTC stolen and sent to https://blockchain.info/address
[1IHKywxXxiL4)zigXrzLKhmB6a74mabkxbSDj

As you can see the address currently contains 55.82152538 stolen coins.

It has been noticed that the coins are all transferred in a few hours

. As discussed here:

http://en.wikipedia.org/wiki/Elliptic Curve DSA

the reuse of the same k value allows anyone to be able to recover the private key.

August 10, 2013

Even worse

Paper 2019/023

Blased Nonce Sense: Lattice Attacks against Weak ECDSA
Signatures in Cryptocurrencies

Joachim Breitner and Nadia Heninger

Abstract

In this paper, we compute hundreds of Bitcoin private keys and dozens of Ethereum, Ripple, SSH, and HTTPS
private keys by carrying out cryptanalytic attacks against digital signatures contained in public blockchains
and Internet-wide scans. The ECDSA signature algorithm requires the generation of a per-message secret
nonce. If this nonce is not generated uniformly at random, an attacker can potentially exploit this bias to
compute the long-term signing key. We use a lattice-based algorithm for solving the hidden number problem
to efficiently compute private ECDSA keys that were used with biased signature nonces due to multiple

apparent implementation vulnerabilities.

2019: all vulnerable addresses were empty already...

Hands-on

In practice

% Protocol
.’ Labs

HOW to get ¢ o ¢ https://go.dev/play/p/mED52078h6P 3
d Secret import (

"crypto/rand”

random Fmt
byte?)

func main() {
X := make([]byte, 1)

if _, err := rand.Read(x); err !'= nil {
fmt.Println("error:", err)
return

)

fmt.Println(x)
)

o
R

Protocol
Labs

)

https://go.dev/play/p/mED52o78h6P

HOW tO get & & ¢ https://go.dev/play/p/BZOnFBfA78t &
d Secret package mailn
I‘al‘ldom import (

' fmt"
I»Inggger S "m:\]th/ rand”
.)

func main() {
Maybe we can use X := rand.Intn(107)

‘math/rana”? fmt.Println(x)
}

N
R

Protocol
Labs

)

https://go.dev/play/p/BZ0nFBfA78t

Its eaSYto ¢ & ¢ htips://go.dev/play/p/BZOnFBIA78t
have bad package main

randomness VX
Ny “This package's outputs
might be easily predictable
» regardless of how it's
seeded”

No, “math/rand” is o, 07)
not meant to be mt.Print
properly random!

h\‘ Protocol
. Labs

https://go.dev/play/p/BZ0nFBfA78t

HOW tO get & = ¢ https://go.dev/play/p/SRKRue9tU1H *
a secret import "crypto/rand” [...]
I‘al‘ldom func main() {

. < b := make([]byte, 1)
Integer if _, err := rand.Read(b); err '= nil {
107. fmt.Println("error:", err)
return
: }
Okay, Ietstgkeabyte x := b[0] % 107
and reduce it modulo fmt.Println(x)

107 then!

Protocol
Labs

~ Oy
0

)

https://go.dev/play/p/SRKRue9tU1H

HOW tO get & & ¢ https://go.dev/play/p/eWtmS3vjWt9

a secret import "crypto/rand" |[...
random ain ()
Integer < ' , 1)

<

and.Read(b); err !'= nil {
antln("error:", err)

1077?

No! Reducing it
modulo 107 means
we're now biased!

:= b[0 Reducing a random binary
fmt.Println string to a value that is not a

power of 2 introduces a
modulo bias!

N~

o
h.ﬂ

Protocol
Labs

https://go.dev/play/p/eWtmS3vjWt9

12000 A
10000 -
8000 A
6000 A
4000 -
2000 A

0 -
(- Or~omhm
e e g AN ME N O R AN AN R AR RAN AR R AR T P T e T R R AR AR R R RABCE B BB BB RR NN LR RRRBE IR IL BEB BR AN AT RS RS,

This is a Modulo Bias

~ Oy
0

y

Protocol
Labs

OOOOOOO

OOOOOOO
HHHHHHH

Out of the 256 possible values for a byte, from 0 to 255, if we reduce modulo 107,
then the first 42 values are more likely to occur because 256 % 107 = 42

How to avoid bias? -

Use the proper package “crypto/rand” whenever security relies on randomness
(even for shuffling!!) and make sure to use either:

e probabilistically safe modulo (i.e. reduce a much larger value modulo)

e rejection sampling (i.e. keep picking a random value until it's smaller than
the biggest multiple of the max value of that bit length)

e Lemire's divisionless method (not noticeably faster for CPRNGs sadly)

Read more about modulo bias in my post about it:

The definitive quide to "modulo bias and how to avoid it”

h\‘ Protocol
=

g Labs

https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

How to avoid bias? -

package rand // import "crypto/rand”

Package rand implements a cryptographically secure random
number generator.

var Reader 1i1o.Reader

func Int(rand io.Reader, max *big.Int) (n *big.Int, err error)
func Prime(rand io.Reader, bits int) (p *big.Int, err error)
func Read(b []byte) (n int, err error)

% Protocol

.’ Labs

Also, don't use floats

Last time | explained this, someone asked me

> Am | suffering from modulo bias if | do:

> rand.Read(b)

> X := 1int(float32(b[0]) / 255.0 * 107)

Well, not the modulo bias per se, but this is still biased, yes.
Floating point arithmetic and precision is going to bias this in weird ways.

See playground demo: https:/qgo.dev/play/p/iq16iCoeE8Q

See also: https://www.pcg-random.org/posts/bounded-rands.html

h\‘ Protocol
i

Labs

https://go.dev/play/p/iq16iCoeE8Q
https://www.pcg-random.org/posts/bounded-rands.html

How to get B
a secret import "crypto/rand” [...]
I‘al‘ldom func main() {

& https://go.dev/play/p/v6ed3FwqgS2Lv S

|nteger < 2-:222ke(”byte' 1) //max value = 255
107? for x >= 255-255%107 { //the closest multiple

rand.Read(b)

With rejection \ x = int(ble])

sampling now we're X %= 107
good! fmt.Println(x)

h\‘ Protocol
.

Labs

https://go.dev/play/p/v6d3FwqS2Lv

How to get B
a secret import (

‘crypto/rand”

random "
integer < "math/big"

1072)

Or using the proper [REUCELEEUIQONE |
nethod rand Int X, _ := rand.Int(rand.Reader, big.NewInt(107))

. ” y := X.Int64()
from “crypto/rand”. fmt.Printf("x=%d of type %T\n", X, x)

It USES rejection fmt.Printf("y=%d of type %T\n", y, y)
sampling under the |

hood.

& https://go.dev/play/p/bI 7 oiFCyr *

h\‘ Protocol
i

Labs

https://go.dev/play/p/bI_7_oiFCyr

This was for “secret” or “local” LA
randomness

> Okay, but how about if | want to run a lottery and don't want
people saying I've rigged my PRNG or my “crypto/rand” package in
case one of my friends wins?

This was for “secret” or “local” LA
randomness

> Okay, but how about if | want to run a lottery and don't want
people saying I've rigged my PRNG or my “crypto/rand” package in
case one of my friends wins?

i.e. “How do we do to get some public, verifiable randomness?”

History: Prior art

"RANDOM.ORG offers true random numbers to anyone on the
Internet. The randomness comes from atmospheric noise,
which for many purposes is better than the pseudo-random

I number algorithms typically used in computer programs.
ol People use RANDOM.ORG for holding drawings, lotteries and
e sweepstakes, to drive online games, for scientific applications

and for art and music. The service has existed since 1998"

[ES SRS

History: The NIST Beacons

» The idea of running a public, verifiable “trusted” randomness
beacon was first proposed by NIST in 2011

 Their NIST Beacon v1 was launched on 2013-09-05

 Their NIST Beacon v2 was launched in 20109:

https://doi.org/10.6028/NIST.IR.8213-draft

https://doi.org/10.6028/NIST.IR.8213-draft

1 """ N =
Previous attempts to generate public randomness

Can we do simpler & faster than before?

drand provides a public randomness
service, just like we have:

e DNS: Highly available source of naming information

e NTP: Highly available source of timing information

e PKls: Trusted network delivering certificates

e Certificate transparency: Certificate authenticity information

Drand: Highly available, decentralized, and publicly verifiable
source of randomness introduced in 2019, launched for
safe general availability in 2020.

% Protocol

.’ Labs

Drand properties

e Drand is software run by a set of independent nodes that collectively produce randomness

o Key is defined on G2 of the BLS12-381 pairing curve, achieves ~128 bits of security

e Drand is open source’, coded in Go, supported by Protocol Labs

e Decentralized randomness service using

o Distributed Key Generation based on Verifiable Secret Sharing

o Threshold cryptography

e Binds together independent entropy sources into a publicly verifiable one

e Tested, audited, and deployed (more on that later)

\‘ Protocol
i

| abs eft blank on purpese-for captionning system

https://drand.love/docs/cryptography/#verifiable-secret-sharing
https://github.com/drand/drand

Drand properties

Decentralized: a threshold of nodes operated by different parties is needed to generate
randomness; there is no central point of failure.

Unpredictable: no party learns anything about the output of the round until a sufficient
number of drand nodes reveals their contributions thanks to threshold cryptography.

Bias Resistant: the output represents an unbiased, uniformly random value.

Verifiable: the random output is third-party verifiable by verifying the aggregate BLS
signatures against the collective public key computed during setup.

% Protocol
=

g | abs Left blank on purposefor captionning system.

The League of Entropy

16

organizations

The Initiative for
CryptoCurrencies

1 aaaaaaaaaaaa

B’ | UNIVERSIDAD
) DE CHILE I

) §
public endpoints KUDELSKI @ M N
e Protocol
SECURITY '@ UCL h.; Labs

) ptisp @) ‘

0 0 . EPFL e

disruptions single
since 2020-08-10 point of failure

% Protocol

.’ | abs Left blank on purposefor captionning system.

The “entropy”

The only moment where
fresh entropy is required is
during the Distributed Key
Generation.

Some partners are getting "y N S
their entropy from so-called SEEEEFENE @1
properties known to be
unpredictable.

Lava lamps in the Cloudflare lobby. Courtesy of @mahtin

h\‘ Protocol
. Labs

https://twitter.com/mahtin/status/888251632550424577

v hash: '8990e/a%aaed2ffed/3dbd/7092123d67289930540d7651336225dcl72e51b2ce”

r groupHash: "176193498eac9ca337150b46d21dd5867/3ea4e35811851869672e59fad4chb390a™

curl https://api.drand.sh/public/latest

Eg(l):)tSOCOJ — Lefngglkonpqrpose-for captionning system.

R —

— p—

https://api.drand.sh/public/latest

How to get public, verifiable
randomness?

Just use a verifying client directly:

e Go: import “github.com/drand/drand/client”
e TS: https://github.com/drand/drand-client/
e Rust: https://github.com/CosmWasm/drand-verify

*

How to get
pu bl |C, . "github.com/drand/drand/client”

© "github.com/drand/drand/client/http"
verifiable

randomness?

func main() {
cHash, _ :=
hex.DecodeString("8990e7a%aaed2ffed73dbd7092123d6289930540d7651336225dc172e51b2ce")

c, _ := http.New("https://api.drand.sh/", cHash, nil)
) N v, _ := client.Wrap([]client.Client{c}, client.WithChainHash(cHash))
Using the verifying
: : r, _ := v.Get(context.Background(), 0)
client directly, easy! fmt .Println(r)

}

o
R

Protocol
Labs

)

> C *

How to get E

pUbI ic import "github.com/drand/drand/client/http"” [...]

? func main() {

randomness? [t

hex.DecodeString("8996e7a9%aaed2ffed73dbd7092123d61289930540d7651336225dc172e51b2ce")
// create new client for url and chainhash

c, _ := http.New("https://api.drand.sh/", chainHash, nil)
// get the latest round of randomness
r, _ := c.Get(context.Background(), 0)

We can use the
public endpoints!

fmt.Printf("Round n°%d, random=\n%x\n", r.Round(), r.Randomness())

}

Round n°2324934, random=
5eb6f4d9fae65b4c6d94967dbb7¢c444860d01e60a3f34938ab495bb5c
a098167/

o
R

Protocol
Labs

)

> C *

How to get E

pUbI Ic import "github.com/drand/drand/client/http"” [...]

verlﬁable
randomness?

func main() {
var chainHash, _ =
hex.DecodeString("8996e7a9%aaed2ffed73dbd7092123d61289930540d7651336225dc172e51b2ce")
// create new client for url and chainhash

c, _ := http.New("https://api.drand.sh/", chainHash, nil)

// get the latest round of randomness
First we can derive r, _ := c.Get(context.Background(), 0)
the randomness fmt.Printf("Round n°%d, random=\n%x\n\n", r.Round(), r.Randomness())
from the signature h := sha256.New()

h.Write(res.Signature())
derRd := h.Sum(nil)

fmt.Printf("Randomness from hash is indeed:\n%x\n", derRd)

o
R

Protocol
Labs

)

How to get
public,
verifiable
randOmneSS? Round n°2324946, random=

1daB@b7a31db72fe3526fb437et241763143d2baeb1df434be70ef63c68e15ab0

. | Randomness from hash is indeed:
And it checks out! 1daBb7a31db72fe3526fb437ef241763143d2baeb1df434be70ef63c68e15ab0

> C *

How to get E

pUbIIC import (bls12381 "github.com/drand/kyber-bls12381" [...]
pKB, .=

hex.DecodeSt ring (" 868fo05ebBe6edcaBad7c8a77ceaa5309a47978a7c71hc5cce96366h5d7a569937c529eeda66c7293784a9402801af31)
verifiable
? suite := bls12381.NewBLS12381Suite()
randomness

pk := suite.G1().Point()
pk.UnmarshalBinary(pKB)

) buf := make([]byte, 8)
But when we're binary.BigEndian.PutUint64(buf, r.Round())

talking abOu-t h := Sh3256.NeW()

, // we need the previous signature!
signatures, we p, _ := c.Get(context.Background(), r.Round()-1)
: h.Write(p.Signature())
should first verity hWrite(buf)
them, right? // we finally get the signed message

msg := h.Sum(nil)

Protocol
Labs

N G

> C *

Howtoget E

pUbI Ic import “github.com/drand/kyber/sign/bls” [...]

// Finally we can verify the signature!

verllable err = bls.NewSchemeOnG2(suite).Verify(pk, msg, r.Signature())
if err '= nil {
randomness?

fmt.Println("Signature didn't verify.")
} else {
fmt.Println("Signature verified.")

}

But when we're
'[alking about // and derive the randomness out of the signature
h.Reset()

Signa’[ureS, we h.Write(res.Signature())

: derRd := h.Sum(nil)
ShOUId ﬂl‘St Verlfy fmt.Printf("Randomness from hash is indeed:\n%x\n", derRd)
them, right? }

Labs

h\‘ Protocol
i

*

How to use E&
verifiable [...]

L[] I EEREd derRd := h.Sum(nil)

x:= int(derRd[0])
for x >= 255-255%107 {

h.Reset()
So, we got a random derRd = h.Sum(derRd)
bytestring, but how x = int(derRd[0])
do we use it? }
X %= 107

We need to “derive”

our values from it! fmt.Println(x)

Protocol
Labs

~ Oy
0

)

Bonus: timelock encryption!

Relying on drand, we've released two open-source libraries and
clients to do timelock encryption: encrypt now towards the future!

w
N

Using the fact that drand (and thus the League of Entropy)
produces new signed rounds every 30 seconds in a reliable way.

Round 1000000 Round 1000002

Feb 30th, 1:19:00 Feb 30th, 1:20:00 Future round

Q

~
U

O
O

...................... . 7\ 7\ 7\ 7\ 7\
- |\ \/ |\ \/ |\

Toda Round 1000001 Round 1000003
y Feb 30th, 1:19:30 Feb 30th, 1:20:30

% Protocol
=

Left blank on purpose for captionning system.
g Labs purp P g Sy

tlock "

. ; : .
- P
- \

- Released in August: “A dead man’s https://timevault.drand.love/

full-yet-responsible disclosure : -
system” Timevault

DEFC@N | ==

- Described in more gory math details
my public Research seminar.

- More details on this public page.
- Incoming ePrint paper!

timevault.drand. love

Read the source code on

To encrypt, choose from text or vulnerability report below and fill in the required fields
To decrypt, choose decrypt and paste in your ciphertext

Caveat emptor: this is running against the drand testnet and may contain bugs!

Decryption time

[08/13/2022, 03:30 AM]

Plaintext Ciphertext

1

https://www.youtube.com/watch?v=Zgsv4LY0Sn0
https://protocollabs.notion.site/protocollabs/Timelock-Encryption-drand-f5df65a54a6641dfa77f9b8168c9b90b#7f369b7460254086bb188fb34080cfa0
https://timevault.drand.love/
https://timevault.drand.love/

Grow the League! @.%@

-
*.

e Join the League of Entropy, help us
provide free public randomness.

e We are looking for partners running nodes or relays.

e Infrastructure and operational requirements are minimal:
Estimated commitment: 1-2 hours/month, 1TvCPU, 512MB RAM

WENEED YOU!

https://drand.love/partner-with-us

‘ S—
‘ Eg%tSOCOl - keft blank on purpose for captionning system.

>

_— o e P . e e g g —— -

https://drand.love/partner-with-us/

\/Y/

For more information and/or if you want to reach out, go to:
https://drand.love
https://leagueofentropy.com
https://github.com/drand/drand

>
Thank you ! Yy

Email Twitter
yolan@protocol.ai https://twitter.com/anomalroil

h\‘ Protocol
=

Left blank on purpose for captionning system.
g | abs purp p g sy

Threats &
security

~ Oy

>

y

Protocol
Labs

If you trust there are never more than a threshold number of malicious nodes

on the (drand) network you're relying on, you’re good

UNLESS! Somebody builds a quantum computer brea
since the BLS signature scheme isn't quantum resista

to go!

KIng modern schemes,

Nt.

(Which means we’re probably safe for the next 5-10 years, maybe even 20.)

Battle-tested BLS League of

cryptography signatures Entropy keys

Permissioned
network

Left blank on purpose for captionning system.

Chained Randomness

Current randomness is chained:

Chained
MSG: MSG:
Hash(1 Il signo\‘tur‘e___o) Hash(3 I signature__l)
Y7 7
>' Round 1 >FL Round 2 ‘%& Round 3 ‘
% N
MSG:
Hash(2 I Sigmture,_.i)

% Protocol
=

Left blank on purpose for captionning system.
g | abs purp p g sy

Multi Protocol

We can now have different
protocols for different use
cases In parallel!

Current target: have a
higher frequency
network

This was just launched
on our testnet!

h\‘ Protocol
i

Drand node 1 Drand node 2 /

m‘j vy
Network C [-Nf'twrk c 4‘
| |
|

Drond node 3 Drond node

Network A 7 I Network B L Network A Network B
/4 L

Network C [Network D J

l

Network C Network D l

- | eft biank on purpose for captionning system.
Labs e — ’P : 2.5

= g—

Unchained Randomness

New unchained randomness:

Unchained
MSG: MSG:
Hash(1) Hash(3)
|
O = Round 1 | Round 2 Round 3 >©
2 V22 i
MSG:
Hash(2)

% Protocol

Left blank on purpose for captionning system.
g | abs purp p g sy

>

